
Three Species Epidemiological  Model with 

Holling Type Functional Responses 

 

Abstract: In the analytical and numerical study, the 

interaction between three species is modeled, where in the  

three species are identified as a prey , which is susceptible, 

the infected prey and the predator with type-II and type-Iv 

functional responses, which represents a mathematical 

model of eco-epidemiology. This study is carried out in 

both analytically and numerically. The boundedness of the 

model is studied and the stability analysis of the model is 

carried out at the positive equilibrium point in terms of 

locally and globally. The conditions for the occurrence of 

Hopf bifurcation with fixed biological parameter values 

are investigated and also it is noticed that the bifurcation 

occurs by sensitive changes in the parameter values of 3 0,l l

, and   which represents the growth rate of a predator, 

transmission rate from infected prey to susceptible prey 

and half-saturation constant of predator respectively. 

Further, the stochastic nature of the model is analyzed 

both analytically and numerically. It is observed that the 

system exhibits chaotic behavior with the sensitive 

parameter values which causes large environmental 

fluctuations. 

Key words: - Infected, Susceptible, Boundedness, Local 

stability, Global stability, Routh-Hurwitze criteria, Hopf 

bifurcation, stochastic. 

 
I. INTRODUCTION 

         Ecological systems  in general dynamic , complex and 

non-linear in nature. The study of the  Pre-Predator dynamics 

is one of the important area in mathematical Ecology and this 

study can optimized through the formulation and analysis 

respective Mathematical models. Many researchers like 

Hastigs and Powell et. all [2,3,4,5,9.10,11,12,19]  examined 

the complex non-linear behavior of three species continues 

time ecological models. 

 In recent years many researchers  focus is on the 

topic called Eco-Epidemiology which is the combination of 

S Hariprasad1, M A S Srinivas2, N.PhaniKumar3 

1Department of Mathematics, Anurag group of Institutions, Hyderabad, Telangana, India. 

                   E-mail: srinadhunihariprasd@gmail.com 

   2Department of Mathematics, Jawaharlal Nehru Technological University, Telangana, India. 

                 E-mail:  massrinivas@gmail.com 

    3Department of Mathematics, Vignan Institute of Technology and Science, Telangana, India. 

                 E-mail: nphanikumar20@gmail.com

Received: May 9, 2020. Revised: June 11, 2020. Accepted: July 6, 2020. Published: July 20, 2020.  

 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES 
DOI: 10.46300/9101.2020.14.14 Volume 14, 2020

ISSN: 1998-0140 62

mailto:srinadhunihariprasd@gmail.com
mailto:massrinivas@gmail.com
mailto:nphanikumar20@gmail.com


Ecology and Epidemiology. Eco-epidemiological systems 

describe   the spread  of infectious diseases among the  

interacting species when  at least one  of the species 

population  have  infectious disease. The analysis  of these 

systems  become significant  in  controlling the spread of these 

diseases  and   got a lot of  consideration since  the Kermac–

Mckendric SIR model was proposed . In eco-epidemiology, 

researchers study  ecological systems when the environment is  

polluted with infectious diseases or  when  either  prey , 

predator or in both populations  spread the disease. Many 

researchers Anderson, May, Chattopadhyay, Arino and Bate 

[15,22,24]  proposed different situations like disease in the 

Prey, disease in both Prey and Predator. Bate A.M. and Hilker. 

FM [28,32]  observed that predator, prey oscillations can shift 

when disease become endemic. 

  Many researchers observed that the environmental 

fluctuations also caused the different behaviors of the dynamic 

systems .J.Ripa [21]  studied the effect of environmental noise 

in ecological food webs. R.M.May [20]  investigated that the 

population has deviated more from steady states in a 

biological system involved in stochastic fluctuations by 

considering white noise for a population. The  work of many  

researches [30,32] in this area motivated us to compute the 

behavior of the coexistence state of the system having random 

environmental fluctuations due to white noise. 

 The complexity of the ecological model is 

considered in terms of the functional responses involved in the 

mathematical models. when prey/predator interacting with 

each other the change can occur in their density . This can be 

referred as functional response by  Holling type-I,II and type-

III. Generally, Holling  type-I,II and type-III  responses have 

been applied to many theoretical studies.  Huang and Xiao 

[8,6 ] and  many other researchers [7,10,13,17,23,25,26,29,34 

] investigated  the bifurcation analysis and stability of a Prey-

Predator model with  Type-II & Type-IV  responses. 

 Here the converted  infected prey to susceptible  

will not be infected again which is the assumption we consider 

in this model. The predator will have interaction  either with 

infected prey or susceptible prey, not both at a time. 

II. MATHEMATICAL MODEL 

  The proposed model is  
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Here 'x' is the susceptible prey density, 'y' is the infected prey 

density   and  'z' is the Predator density at any instant of time t. 

The parameter 'a' is growth rate of susceptible prey; the 

parameter  ' b' is intraspecific competition among individuals 

of prey x;  the parameters , ,    are half saturation constants 

;  0 2,l l are  rate  of infection; 1 3, ,l l are the maximal growth rate 

of the species ;  is  the  rate of infected prey individuals to 

recover and reenter into susceptible prey; 2d is mortality rate 

of the predator , it is evident that all parameters are positive.     

         The system (2.1 ) has eleven parameters.  It is evident 

that dealing a system having more number of parameters is 

challenging and required more complicated analysis, 

reformulating a model in dimensionless type is 

helpful from many aspects. This procedure will facilitate to 

observe  the consistency of the model equations and 

ensure that each  term have an equivalent set of units 

in equation.   non-dimensionalizing the model reduces the 

number of free parameters and divulges a smaller set of 

quantities that govern the dynamics of model. Consider the  

model values  
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    After non-dimensionalization, The proposed model (1.1 )  

becomes 
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III. THE BOUNDEDNES OF THE SYSTEM 

    In this section, we will attain some adequate conditions  for 

the  boundedness of (2.2). 

Theorem(3.1): The system (2.2 ) is uniformly bounded. 

Proof:  we consider a function  (  ) ,t x y z    , then

d dx dy dz

dt dt dt dt
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Choose 5 8 3 71,  1,   ,and      then   

 1 1 4 5 2 7 21d
x k x y yk zk

dt
       


 

Now we choose arbitrary positive real number   for which  
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For simplicity we take  

 5 2 4 7 20 min ,k k      ,Therefore 
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Here   is the maximum value of  1 1 1x k x    . So, 

( ) ( )d

dt

t
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Then we obtain 0.( ) (0) te for tt 

 

  
   

 
   As 

t  , then  .( )t



  Thus  t  lies between 0 and



 , 

Therefore, ( )t  is bounded in 3R .   

IV. STEADY STATES 

     The system has the following five steady state solutions 

resulting from 0, 0, 0dydx dz

dt dt dt
   . 
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5)  the coexistent steady  state is obtained by from the 

equations: 
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Solving equations (3.2) & (3.3),we get    
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whenever   2 1k   and   x        , then the 

equilibrium point   , ,E x y zE


    exists.    

V. STABILITY ANALYSIS OF COEXISTENT 

STEADY STATE 

Theorem(5.1):  The equilibrium point E


 is stable locally 

when  1 30,  0B B  and  1 2 3( ) 0B B B  . 

Proof:- The Jacobian matrix is   
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The characteristic equation of  EJ  is 

3 2
1 2 3 0B B B      . where 

 1 11 22 2 11 22 32 23 12 21 13 31

3 11 32 23 13 31 22 12 23 31 13 21 32

( ); ( );
( ).

b b B b b b b b b b b

B b b b b b b b b b b b b

B       

   
 

Here  

   
22 2

1 3 0 0 1 12
2

1 ( ) (2 1)y
z x x xB z m m k

N
 




          

, 

2 2 2 2 28
3 3 3 0 2 1 1 2 35 2

2 3

2
7 0 4 1

2
1 2 3

( ) (2 1)

( )( )

y z
y z x x

y z x x

B N m N k N N
N N

m N

N N N


 

 

 

   

   

  

 
 
 

    

 
 

 
2 2

3 7 0 1
5 8 32 2 2

31 2 3

.
( )x y z z xm N

N
NN N N

 
 

     
 
 




 

Consider, 1 2 3B B B    

2 2
3 2 86 4

2 3
2

5 1 4 3
3 2 2
1 2 3

2
3 7 0

2 3
2 3

( )

( )( )

( )

y z
F z

y x y z

z x x

F N y N
N N

N F N

N N N

m F

N N



 

 

 
   

    

   

     

 



 

 

2
8 3 3 5

2 3 2 2
2 2 3 1 3

3 1 32
7 0

2 2 3 1 1 4 2
2 3 1

3

( )

( )
( )

y z y z x

z
x y z x

z x

x

F N

N N N N N

N N
m

N N N
N N N

N

  




 

     



   

 



 
 
 

 
 
 
 
 


 




 

 

Where      

     2
1 2 3 0

2 2 2
3 3 0 2

2 2
1 1 2 3

.

1 ; 1 ; ;

( )
(2 1)

x x

z x

x

N N y N m

y N m N
F

k N N





  

  





 
  
 

     

 


 

 

1 2 3 0B B B    , if 

1
2 2

2 2 7 01
1 0 3 8

3 5 2

( )) 4 1 ) 1 ) y xz mN
i k m ii N iii

N N






   
 
 


   . 

By Routh-Hurwitze  principle, the steady state  point E


 is 

stable locally, if 1 30, 0B B    and   1 2 3 0B B B   holds. 

Theorem(5.2): Along with the conditions stated in the  above 

theorem (5.1) and If 
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 then , the steady state point E


 is  stable globally. 

 

Proof:  We consider a Lyapunov function ( )t  such that 
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The sufficient conditions  for 0d

dt


    are as follows 
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Numerical Simulations:  
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Figure 5.1:(a) a time profile of the steady state with respect to 

the populations of  x, y , z  .  (b)  phase portrait  at E


=(0.5963, 0.0272, 0.0001539) with the parameter values 
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0m  0.00009982 ; 1  1.099912 ; 3  0.099872 ; 4 

0.099893 ; 5  0.199285 ; 7  0.0099 ; 8  0.0999389 ; 

1k  1.92 ; 2k  1.00009 ; 3k  1.4091 . 

 (c) a time profile and phase portraits in two dimensional 

plane for the above parameter values. 
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                         (C) 

 

Figure 5.2:(a) a time profile of the steady state with respect to 

the populations of  x, y , z . (b) phase portrait  at E


=(0.723, 

0.0184, 0.000312) with the parameter values 0m  0.09982 ; 

1  1.079912 ; 3  0.009 ; 4  0.08 ; 5  0.2 ; 7 

0.01 ; 8  0.099 ; 1k  1.42 ; 2k  1.01 ; 3k  1.2 . 

(c) a time profile and phase portraits in two dimensional plane 

for the above parameter values. 
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  (c) 

 

 

 

 

 

 

 

 

                      (d) 

 

 

 

 

 

 

 

                      (e) 

 

 

 

   

    

 

 

 

 

 

 

 

 

    (f) 

 

 

Figure 5.3:(a) a time profile of the steady state with respect to 

the populations of  x, y , z . (b) phase portrait  at E


=(0.5411, 

0.1689, 0.5680) with the parameter values 0m  0.000918 ; 

1  6.019 ; 3  0.1099; 4  0.00107 ; 5  0.104 ; 7 

0.79 ; 8  3.990 ; 1k  1.92 ; 2k  5 ; 3k  1.114 . (c) a time 

profile and phase portraits in two dimensional plane for the 

above parameter values. (d) a time profile of Infected prey 

population. (e) a time profile of Susceptible prey population. 

(d) a time profile of Predator population. 

 

VI. HOPF BIFURCATION  

 In the present study, various parameters 

have been used to exhibit the behavior of dynamical system. 

Eco-Epidemiological  models with constant parameters are 

frequently found to approach a steady state where species 

coexist in equilibrium. The behavior of a system may change 

in relation to the parameters used in the model. Such 

parameters which cause the transition in a system are named 

as bifurcation points. At any point where the system has 

nontrivial periodic solutions, a Hopf bifurcation occurs. 

 The following theorem established that 

Hopf bifurcation occurs for the system (2.2) at a sensitive 

value 7 7  . For proving this, we follow Liu [6,27] 

approach. 
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Theorem(6.1): At 7 7   the model (2.2)  occurs Hopf 

bifurcation along  with the local stability conditions (i),(ii),(iii) 

of theorem (5.1) holds. 

Proof:  

let 
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 . Hence, a simple Hopf bifurcation 

occurs at 7 7  . 

Numerical Simulations: 

 Using the same set values in Figure 5.3,  from the 

theorem (6.1), we can determine the critical value of  7  and 

it is 7( ) 0.79   . The system is unstable for 7 7    around 

the positive equilibrium point E


, taking 7 0.81    the 

solution of the system (2.2) has been shown in Fig: 6.1(b) , 

which indicate that the system is unstable around the positive 

equilibrium point E


.The corresponding graphs shown as 

follows  
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Figure 6.1:(a) a time profile of the steady state with respect to 

the populations of  x, y , z . (b) Bifurcation diagram for 

7 0.81  . (c) a time profile and phase portraits in two 

dimensional unstable graphs. (d) a time profile of Predator 

population. (e) a time profile of Susceptible prey population. 

(f) a time profile of Infected prey population. .  

 

 

 

 

 

 

VII. Stochastic analysis 

        In this section,  the stochastic version of the 

model has been formulated by considering the influence of the 

random noise which is in the form of  additive Gaussian white 

noise to the model (2.2) and the perturbations are as fallows  
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Applying Fourier Transform on both sides of (7.1.1), we get 
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   represents the matrix form of above  

equations,  (7.2)  

where                                               
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 By substituting above values in (7.3), then  
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 If  2 0p  , 3 0p  , then   the population variances are      
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If  1 0p  , 3 0p   then the population variances are  
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 Numeric Simulations for stochastic system: 

 In this section the stochastic model (7.1) is examined 

numerically in the Figures 7:(a1, b1) to 7:(a5, b5) of the 

varying parameter values ( 1 2 3, ,p p p ): (0.1,0.3,0.2); 

(0.1,0.05,0.7); (0.05,0.05,0.17); (0.5,0.5,0.19);                 ( 

0.05,0.5.0.9);  with the following fixed  parameters 0m 

0.00009982 ; 1  1.099912 ; 3  0.099872 ; 4  0.099893 

; 5  0.199285 ; 7  0.0099 ; 8  0.0999389 ; 1k  1.92 ; 

2k  1.00009 ; 3k  1.4091.             
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Figures 7 :(a1)
 
to (a5)

  
represents variation of  x, y , z verses 

time t and Figures 7: (b1) to (b5) represents  phase portraits 

of variation of  x, y , z with  different  1 2 3, ,p p p  parameters 

values.  

CONCLUSIONS 
In this paper, we consider the three species Eco-Epidemiology 
model with Holling Type-IV  and Type-II Predator(z) 
functional response with Susceptible prey(x) and infected Prey 
(y) respectively to understand the dynamics of the model.  The 
co-existence steady state    , ,x y z   is exist  when  the rate 

of infection 0( )l  which less than the  rate of infected prey 
individuals to recover and reenter into susceptible prey ( )
and also   
 x        where , ,     values are defined in 
section 4.The stability of the system  is carried out locally and 
globally at the coexistence state. The numerical simulations   
in section 5 are evident to the stability of the coexistence state 
point . The global stability at the coexistence state is carried 
out by constructing the Lyapunov function. It is observed that 
the proposed model exhibits  Hopf bifurcation when The ratio 
between  the growth rate of the predator (z) and  the product of 
the  rate of infection 0( )l  and the half saturation constant ( )  
is greater than 0.79 which is equal to 7 .  
 we proposed a stochastic version of the model in 
section 7 and studied the behavior of the stochastic system 
around the co-existence steady state. From this study we 
observed that the sensivity of parameters (low and high 
intensively) causes large environmental fluctuations which 
leads to chaotic behavior, this can be showed by the figures 
7:(a1,b1) to 7:(a5,b5) of section 7.So, we conclude that the 
environmental fluctuations also effect the  our Eco-
Epidemiology model.. 
 

REMARKS 
Initially Lotka - Volterra proposed a linear functional response 
for a pry-predator model and which is unbounded. This 
response is called Type-I functional response. But,  while 
studying the complexity in model ecosystems need reasonable 
functional responses that should be nonlinear and bounded. 

The  predator functional response 
wx

c x
 which is called 

Holling Type-II functional response. This functional response 
describes the predator per capita rate of predation is limited by 

its capacity to process food. The functional response 2

wx

d x
is 

a Holling type-IV functional response. This response function 
describes a situation in which the predator’s per capita rate of 
predation decreases at sufficiently high prey densities. In this 
paper we proposed Type-II and Type-IV functional response, 

which are 0l x

x 
, 3

2

l x

x 
 respectively. By considering these 

functional responses the model becomes more complex with 
the more number of parameters. Due to this a third order 
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characteristic equation is obtained at the co-existence steady 
state with the co-efficient having power 4 which is challenging 
to analyze by using Routh-Horwirtz criteriaReferences. 
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